# INHIBITION OF LYCOPENE CYCLIZATION BY CAPSICUM CHROMOPLAST MEMBRANES BY 2-AZA-2,3-DIHYDROSQUALENE

BILAL CAMARA, ODETTE DOGBO, ALAIN D'HARLINGUE and FRANÇOISE BARDAT

Laboratoire de Régulations Métaboliques et Différenciation des Plastes, Université Paris 6, Tour 53, 4 Place Jussieu, 75230 Paris Cédex 05, France

(Received 20 March 1985)

Key Word Index—Capsicum annuum; Solanaceae; chromoplast; lycopene cyclase; inhibitor.

Abstract—2-Aza-2,3-dihydrosqualene strongly inhibited lycopene cyclase from Capsicum chromoplast membranes.

#### INTRODUCTION

It has been demonstrated that 2-aza-2,3-dihydrosqualene is a potent inhibitor of 2,3-oxidosqualene cyclase from higher plants [1]. Unexpectedly, this compound induces an accumulation of lycopene in liquid suspension cultures of *Rubus fruticosus* [P. Benveniste, personal communication]. This phenomenon is also observed in liquid suspension cultures of *Nicotiana tabacum*, and, to a lesser extent, in green pericarp disks of pepper fruits pre-treated with tween 80 [unpublished observations].

It has been shown that lycopene is the substrate for the cyclase involved in  $\beta$ -carotene synthesis in Lycopersicon esculentum [2] and in Capsicum annuum chromoplasts [3]. Accordingly, we designed experiments to study the in vitro effect of 2-aza-2,3-dihydrosqualene on lycopene cyclization. In this paper, we show that 2-aza-2,3-dihydrosqualene inhibits lycopene cyclase from Capsicum chromoplast membranes.

## RESULTS AND DISCUSSION

Capsicum chromoplast membranes were incubated with lycopene. At the end of the incubation procedure, a preliminary chromatography on silica gel separated the fraction containing bicyclic carotenes ( $\alpha$ - and  $\beta$ -carotenes) from lycopene (system 1). Subsequently, this fraction was streaked on MgO-Kieselguhr [4] to separate  $\alpha$ - and  $\beta$ carotenes (system 2). The latter were rechromatographed on silica gel plates (system 3). At the completion of this procedure,  $\alpha$ - and  $\beta$ -carotenes were radiochemically pure. HPLC [5] of the total carotene fraction is presented in Fig. 1. The radioactivity from lycopene was significantly incorporated into  $\beta$ -carotene. The conversion rate was about 150 000 dpm/hr/mg protein. No radioactivity was detected in  $\alpha$ -carotene. This confirms the prevalence for the biosynthesis of carotenoids with a  $\beta$  ring during the ripening of Capsicum fruits [3]. Furthermore, the conversion was not performed by boiled chromoplast membranes.

2-Aza-2,3-dihydrosqualene emulsified with lycopene was investigated as an inhibitor of lycopene cyclase. The results obtained are shown in Table 1. They clearly demonstrate a marked inhibition of lycopene cyclase activity by 2-aza-2,3-dihydrosqualene. This data comple-

ments the results obtained in vivo with Nicotiana tabacum cell cultures grown for 4 weeks in the presence of 1.75  $\mu$ g/ml of this compound. In the later case, lycopene was the major carotene detected (80%) followed by  $\zeta$ - and  $\gamma$ -carotenes, while the xanthophyll and the chlorophyll fractions were qualitatively unaffected.

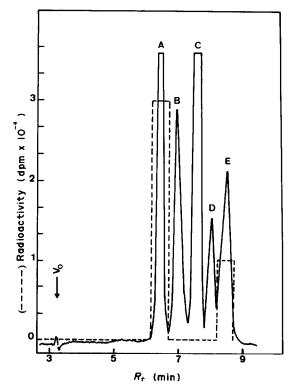



Fig. 1. Separation of labelled  $\beta$ -carotene from labelled lycopene by reverse phase HPLC. A, Lycopene; B,  $\gamma$ -carotene; C,  $\zeta$ -carotene; D,  $\alpha$ -carotene; E,  $\beta$ -carotene; Vo, void vol. After the addition of carrier amounts of authentic standards, the lipid extract was separated on a  $\mu$ C<sub>18</sub> Bondapak column eluted with MeCN-EtOAc-CHCl<sub>3</sub> (7:2:1); flow rate: 1 ml/min; detection: 440 nm.

2752

Table 1. Effect of 2-aza-2,3-dihydrosqualene on the cyclization of lycopene to  $\beta$ -carotene

| 2-Aza-2,3-<br>dihydrosqualene<br>(μM) | Radioactivity<br>(dpm/mg protein) |          |
|---------------------------------------|-----------------------------------|----------|
|                                       | β-carotene                        | Residual |
| 0                                     | $150 \times 10^{3}$               | _        |
| 1                                     | $26 \times 10^{3}$                | 17       |
| 2.5                                   | $21 \times 10^{3}$                | 14       |
| 5                                     | $6.8 \times 10^{3}$               | 5        |
| 10                                    | $3 \times 10^{3}$                 | 2        |
| 20                                    | $1.5 \times 10^{3}$               | 1        |

\*Residual activity = 
$$\frac{\text{activity in the treated sample}}{\text{activity in the control}} \times 100.$$

The exact mechanism involved in the inhibition of lycopene cyclase remains to be determined. Nevertheless, 2-aza-2,3-dihydrosqualene should be a useful tool for studies on carotenoid biosynthesis.

#### **EXPERIMENTAL**

Capsicum annuum L. chromoplast membranes, isolated as described previously [6], were incubated with labelled lycopene, generously given by Prof. Dr. Brubacher and Dr. Fricker from Hoffman LaRoche, in a medium containing (1 ml final vol.): 0.25 M sorbitol, 5 mM MgCl<sub>2</sub>, 2 mM MnCl<sub>2</sub>, 5 mM DTT, 2  $\mu$ M FAD, 1 mM NADP, 5 mg Tween-80, 15,15'-[<sup>3</sup>H]-lycopene

(480 000 dpm, 160 Ci/mol), 50 mM Tris-maleate (pH 6.8) and chromoplast membranes equivalent to 0.5 mg protein. The incubation was performed at 25° for 1 hr. The reaction was terminated with 4 ml CHCl<sub>3</sub>-MeOH (2:1). After the addition of 400  $\mu$ g non-radioactive lycopene,  $\zeta$ ,  $\gamma$ , and  $\alpha$ -carotenes, the lipid extract was subjected to TLC on silica gel G developed with petrol-Et<sub>2</sub>O (99:1) (system 1). The bicyclic carotene fraction ( $\alpha$  and  $\beta$ -carotenes) was streaked on MgO-Kieselguhr developed with C<sub>6</sub>H<sub>6</sub>-petrol (9:1) to resolve  $\alpha$ - and  $\beta$ -carotenes (system 2).  $\alpha$  and  $\beta$ -carotenes were further purified on silica gel developed with petrol (system 3). Additionally, the total carotene fraction was analysed by HPLC on  $\mu$ C<sub>18</sub> Bondapak [5]. The incorporated radioactivity was determined in a liquid scintillation spectrometer. The proteins were determined according to the procedure of Bradford [7].

Acknowledgements—We thank Professor Cattel, Instituto di Chimica Farmaceutica Applicata, Turin, and Professor Benveniste, University of Strasbourg, for kind gift of 2-aza-2,3-dihydrosqualene and helpful advices. We are indebted to Mrs C. Agnès for liquid suspension cultures of Nicotiana tabacum.

## REFERENCES

- Delprino, L., Balliano, G., Cattel, L., Benveniste, P. and Bouvier, P. (1983) J. Chem. Soc. Chem. Commun. 381.
- Porter, J. W. and Spurgeon, S. L. (1979) Pure Appl. Chem. 51, 609
- 3. Camara, B. and Monéger, R. (1982) Physiol. Vég. 4, 757.
- 4. Britton, G. and Goodwin, T. W. (1971) Methods Enzymol. 18c, 654
- 5. Camara, B. (1985) Methods Enzymol. 110, 244.
- Camara, B., Bardat, F. and Monéger, R. (1982) Eur. J. Biochem. 127, 255.
- 7. Bradford, M. M. (1976) Analyt. Biochem. 72, 248.